C-terminal juxtamembrane region of full-length M2 protein forms a membrane surface associated amphipathic helix.
نویسندگان
چکیده
The influenza A M2 protein is a 97-residue integral membrane protein involved in viral budding and proton conductance. Although crystal and NMR structures exist of truncated constructs of the protein, there is disagreement between models and only limited structural data are available for the full-length protein. Here, the structure of the C-terminal juxtamembrane region (sites 50-60) is investigated in the full-length M2 protein using site-directed spin-labeling electron paramagnetic resonance (EPR) spectroscopy in lipid bilayers. Sites 50-60 were chosen for study because this region has been shown to be critical to the role the M2 protein plays in viral budding. Continuous wave EPR spectra and power saturation data in the presence of paramagnetic membrane soluble oxygen are consistent with a membrane surface associated amphipathic helix. Comparison between data from the C-terminal juxtamembrane region in full-length M2 protein with data from a truncated M2 construct demonstrates that the line shapes and oxygen accessibilities are remarkably similar between the full-length and truncated form of the protein.
منابع مشابه
Dynamic structure of lipid-bound synaptobrevin suggests a nucleation-propagation mechanism for trans-SNARE complex formation.
The synaptic vesicle protein synaptobrevin engages with syntaxin and SNAP-25 to form the SNARE complex, which drives membrane fusion in neuronal exocytosis. In the SNARE complex, the SNARE motif of synaptobrevin forms a 55-residue helix, but it has been assumed to be mostly unstructured in its prefusion form. NMR data for full-length synaptobrevin in dodecylphosphocholine micelles reveals two t...
متن کاملStructural and Dynamic Study of the Transmembrane Domain of the Amyloid Precursor Protein
Alzheimer's disease affects people all over the world, regardless of nationality, gender or social status. An adequate study of the disease requires essential understanding of the molecular fundamentals of the pathogenesis. The amyloid β-peptide, which forms amyloid plaques in the brain of people with Alzheimer's disease, is the product of sequential cleavage of a single-span membrane amyloid p...
متن کاملEvidence that insertion of Tomato ringspot nepovirus NTB-VPg protein in endoplasmic reticulum membranes is directed by two domains: a C-terminal transmembrane helix and an N-terminal amphipathic helix.
The NTB-VPg protein of Tomato ringspot nepovirus is an integral membrane protein found in association with endoplasmic reticulum (ER)-derived membranes active in virus replication. A transmembrane helix present in a hydrophobic region at the C terminus of the NTB domain was previously shown to traverse the membranes, resulting in the translocation of the VPg domain in the lumen. We have now con...
متن کاملMembrane-dependent effects of a cytoplasmic helix on the structure and drug binding of the influenza virus M2 protein.
The influenza A M2 protein forms a proton channel for virus infection and also mediates virus assembly and budding. The minimum protein length that encodes both functions contains the transmembrane (TM) domain (roughly residues 22-46) for the amantadine-sensitive proton-channel activity and an amphipathic cytoplasmic helix (roughly residues 45-62) for curvature induction and virus budding. Howe...
متن کاملMutational analysis of the cytoplasmic tail of jaagsiekte sheep retrovirus envelope protein.
Jaagsiekte sheep retrovirus (JSRV) is the etiologic agent of a transmissible lung cancer in sheep, ovine pulmonary adenocarcinoma. JSRV is unique in that the envelope protein functions as an oncogene, since it can morphologically transform fibroblast and epithelial cells in culture and can induce lung tumors in mice. Previous studies indicated that the transmembrane (TM) protein is essential fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Protein science : a publication of the Protein Society
دوره 24 3 شماره
صفحات -
تاریخ انتشار 2015